

Your engineering partner for low carbon concrete

- A young and vibrant company strongly motivated to reduce the ecological footprint of the construction industry
- Turning inorganic waste streams into low carbon concrete solutions
- Integrated in the network of large metallurgical companies as well as large construction groups
- 11 team members passionate about concrete innovation

Your engineering partner for low carbon concrete

Chemical analysis
Mineral analysis
Crushing/grinding
Sizing and seperation
Thermal processing

Alkali activation Cement replacement Acid activation Carbonatation Mg-cement

3D-printing mortar Acid resistant mortar Floor screed Ready-mix concrete UHPC

Aggregate testing Workability Strength testing Freeze-Thaw Carbonatation

Industrial implementation LCA Waste legislation Building legislation

What is concrete?

- Cement reacts with water and becomes a strong durable material
- Can be made with cheap and local raw materials
- Compatible with steel reinforcement
- From liquid to hard at room temperature

Most used man made material in the world

12.500.000.000 m³ per year

Belgium covered with 40 cm of concrete every year

Solid concrete block of 2,3 x 2,3 x 2,3 km³

15% of the mass results in 95% of the Carbon Footprint

Cement Production Process

A **highly energy intensive** process, producing roughly 0,85 ton of CO₂ per 1 ton of cement produced (vs. 2,5 ton of CO₂ per 1 ton of reinforcement steel)

4.4 billion ton of cement is being produced each year, resulting in a contribution of **8** % of worldwide **CO**₂ **emissions**.

 $CaCO_3 \rightarrow CO_2 + CaO$

Technologies applicable at different levels

- 1. Clinker level
 - Energy efficiency
 - Alternative fuels
 - Carbon capture & storage

- Clinker ratio (SCMs)
- Optimal grinding/blending of blended cements
- Non-Portland binders
- 3. Concrete level
 - The right cement for the right application
 - 'overdosing'
- 4. Structural level
 - Alternative building solutions to concrete
 - 'overdesigning'
- 5. Recycling, circular economy
 - Recycling concrete
 - Recycling cement

Figure 10: Patenting trends for five low-carbon technology areas in the cement sector

- Metallurgical slags
- Fly ashes
- Bottom ashes
- Waste clays
- Glass waste
- Vulcanic ashes

water

concrete

alternative binders:

- Metallurgical slags
- Fly ashes
- Bottom ashes
- Waste clays
- Glass waste
- Vulcanic ashes

- ...

aggregates

- Artificial aggregates
- Recycled aggregates

Less primary raw materials
-> circularity

ecological concrete

up to 90 % CO₂ -> sustainable

Cement vs. Cars

Source: after ABT- Studio beton 15/04/21 – Theo van Wolfswinkel

ResourceFull finds use for these by-products and transforms them into minerals suitable for the production of a new generation of concrete.

Metal and mining industry
Huge waste piles with low value
or non-existing applications

Concrete industry
OPC dependency

Eco-friendly alternative: up to 90% CO₂ reduction

Europe & world
Dependancy on primary raw
materials

CO₂ reduction of construction industry

What about cost?

You can produce 1 m³ of traditional concrete for roughly 100€.

Driver	Property
Ecological	 Less CO₂ Less primary raw materials Less landfill
Economical	 Cost competitive CO₂ taxation Green push policy makers
Technical	 Chemical resistance Acid resistance Fireproof (>1000 °C) Strength(development) Bonding to traditional cement/concrete Bonding to ceramics, glass, metal Low permeability Low sensitivity degradation ASR

The use of industrial by-products and/or waste (= low value products) opens opportunities.

But have to factor in:

- Pre-treatment: washing, drying, milling...
- Cost of "activation"
- Transport

Driver	Property
Ecological	 Less CO₂ Less primary raw materials Less landfill
Economical	 Cost competitive CO₂ taxation Green push policy makers

Cement will become more expensive

Lack of primary resources

- + Increasing cost of transport
- → Average increase of 3-6% materials costs in the construction sector

Gas prices went through the roof in 2021

→ Energy-intensive building materials (e.g. cement) are undoubtably going to rise.

Driver	Property
Ecological	 Less CO₂ Less primary raw materials Less landfill
Economical	 Cost competitive CO₂ taxation Green push policy makers

Cement will become more expensive

Europe's Emissions Trading System (ETS) has been te centerpiece of the EU's climate policy to reduce greenhouse gas emissions from EU's industrial and power sector.

Until today, CO₂ allowances have been received for <u>free</u> by sectors such as steel and cement.

Under the 2030 Climate Target Plan, the EU has agreed to accelerate the pace: reforming the ETS by phasing out free allowances.

https://sandbag.be/index.php/carbon-price-viewer/

Driver	Property
Ecological	 Less CO₂ Less primary raw materials Less landfill
Economical	 Cost competitive CO₂ taxation Green push policy makers

Cement will become more expensive

Major cement players have announced the price rise for cement over 2021: **30 (!)** %

Since it is uniformal, switching supplier is out of the question and the price rise is basically non-negotiable.

Opportunities for low carbon binders and technologies

Driver	Property
Ecological	 Less CO₂ Less primary raw materials Less landfill
Economical	 Cost competitive CO₂ taxation Green push policy makers

Policy makers favoring green products

NL: Environmental Cost Indicator (MKI-score)

Impact categorie	Unit	Weighting Factor (€/unit)
Global Warming	kg CO₂-eq	0,05 €
Ozon depletion	kg CFC-11-EQ	30,00 €
Ecidification of soil and water	kg SO₂-eq	4,00 €
Eutrophication	kg PO ₄ ³eq	9,00€
Depletion of Abiotic Resource Elements	kg SB-eq	0,15 €
Depletion of abiotic resources – fossil fuels	kg SB-eq	0,15 €
Human Toxicity	kg 1,4 DB-eq	0, 09 €
Freshwater ecotoxicity	kg 1,4 DB-eq	0,03 €
Marine water ecotoxicity	kg 1,4 DB-eq	0,0001 €
Terrestrial ecotoxicity	1,4 DB-eq	0,06 €
Photochemical oxidant creation (Smog)	kg C ₂ H ₄	2,00€

Driver	Property
Ecological	 Less CO₂ Less primary raw materials Less landfill
Economical	 Cost competitive CO₂ taxation Green push policy makers
Technical	 Chemical resistance Acid resistance Fireproof (>1000 °C) Strength(development) Bonding to traditional cement/concrete Bonding to ceramics, glass, metal Low permeability Low sensitivity degradation ASR

So what's holding us back?

- Need for standardisation on different levels
 - The development and introduction of such documents is a gradual process at best
- The unanswered questions about the durability of AAM concrete
 - Structural concrete must last several decades
 - Data on such time scales is simply not available for a newly developed material

But, we're working on it:

- RILEM Technical Committees: C224-AAM; 247DTA; 281-CCC; 283-CAM; MPA
 - Global technical committees with the aim of promoting scientific knowledge regarding building materials, systems and structures and stimulating market uptake.
- Collaboration with multiple research institutes across EU
 - European collaborations with large-scale research into sustainability
 - H2020, Horizon Europe, EIT Raw Materials, VLAIO ...
 - Putting it to the test: selecting the right applications
- In Belgium (2022): WGAAM in the commission E-104
 - Workgroup with purpose of constructing a norm for alternative binders in collaboration with BE-CERT

Alternative cements/binders: new?

UNITED STATES PATENT OFFICE.

HANS KÜHL, OF BLANKENESE, NEAR HAMBURG, GERMANY, ASSIGNOR, BY MESNE ASSIGN-MENTS, TO THE ATLAS PORTLAND CEMENT COMPANY, OF NEW YORK, N. Y., A CORPORA-TION OF PENNSYLVANIA.

SLAG CEMENT AND PROCESS OF MAKING THE SAME.

No. 900,939.

Specification of Letters Patent.

etters Patent. Patented Oct. 13, 190

Application filed July 3, 1907. Serial No. 381,960.

b

THE ACTION OF ALKALIS ON BLAST-FURNACE SLAG By A. O. PURDON

Although alag may be considered to be a cement in itself, hydration proceeds with such extreme also need that it cannot be used alione as send. The reactions are consulty considered to be a consulty of the constraint of the cons

First patent in 1908

Lower in Ca Higher in alkalis, Si en Al

>3M m³ in 80-90's in Soviet Union

Parking 58 in 50's in Brussels by 'Le Purdociment'

Alternative cements/binders: new?

Landing strip in Brisbane, Australia 40 000 m³ (2014)

Geopolymer bicycle lane Zeewolde, NL (2016)

Geopolymer roundabout Enschede, NL (2017)

Completed by ResourceFull

UHPC staircase, Lier, BE (2017)

Public infrastructure 22m³ Leuven, BE (2020)

61 m³ of foundations Kamp C, Westerlo BE (2021)

Public infrastructure Gent, BE (2021)

The story of the foundations

Interreg North-West Europe **URBCON**

European Regional Development Fund

https://www.nweurope.eu/projects/project-search/urbcon-by-products-for-sustainable-concrete-in-the-urban-environment/

URBCON demonstrators

Stairs in school building + public infrastructure

Two pedestrian bridges

't Centrum – Kamp C

Design based on open plan structure with a symmetrical grid.

Mogelijke uitbreiding unit B: de technische koker ommuren.

't Centrum – Kamp C

't Centrum – Kamp C

- 40 foundation blocks (36 m³)
 - C20/25 EE2 S5 (60 min stability)
- 37 beams (20 m³)
 - C30/37 EE3 SCC (60 min stability)

Intermezzo: concrete notation

The stages in bringing technology to market

Binder development

The stages in bringing technology to market

Durability testing

Large scale testing and monitoring

Holy trinity of concrete theology

...and now for real.

Production partners for the pilot

Willy Naessens

Construct

Bedrijvenpark de Coupure 15 9700 Oudenaarde

J. Janssens & ZN
BOUWMATERIALEN
& BETON

Production of the precast elements

Two different kind of concrete were developed with respectively 0 and 95kg CEM I per m³ of concrete. The foundations were produced during 4 production days and quality control measures were used every two pours.

- Cubes to measure strength
- Water/cement analysis

In the standard recipe, the granular skeleton was completely preserved and only the binder was replaced.

Production of the ready-mix concrete

URBCON demonstrators

Stairs in school building + public infrastructure

Two pedestrian bridges

Foundation for 't Centrum

Test	standard	
Slump stability	EN 12350-2	
Fresh density	EN 12350-6	Fresh properties
Air content	EN 12350-7	
Compressive strength	EN 12390-3	
Flexural strength	EN 12390-5	- Mechanical properties
Splitting tensile strength	EN 12390-6	
Elastic modulus	EN 12390-13	
Chloride Migration	NT Build 492	Durability properties
Carbonation	EN 12390-12	
Water absorption		
Freeze and thaw - salt	EN 12390-9	
Reinforcement corrosion		
Creep and shrinkage	EN 12390-17	Structural Properties
Pull out (steel rebars)	EN 10080	
Flexural strength - slab		
Shear capacity - slab		

